5: 人工衛星(MODIS) データの整備

担当:植山雅仁 実習場所:B11棟・238号室

5. MODIS データのファイル名について

MODSI データのファイル名には、図 1 のような決ま りがあり、プロダクト名、年、通日、タイル番号などの 情報から成っている。図 1 の場合は、2010 年 1 月 1 日~ 8 日までの version 5 の MOD09A1 プロダクトである事が 読み取れる。また、データの対象領域が h28v05 であるこ とがわかる。

6. ModisTool の使い方

LP DAAC からダウンロードした MODIS データは、 SIN (シヌソイダル図法)と呼ばれる特殊な投影法の データである。また、データの形式は hdf (Hierarchical Data Format)である。そこで、NASA から提供されて いる ModisTool を用いて、取り扱いが容易な等緯度 経度図法のバイナリデータにデータを変換する。

コマンドプロンプトを立ち上げ、「ModisTool」と 入力すると、図2のような ModisTool のダイアログ が起動する。データの変換手順は以下の通りである。

- 処理対象ファイルを選択する(注意:異なる日、 異なるプロダクトのデータを同時に選択する ことは出来ない)。指定するデータの絶対パス に全角文字及び、スペース文字があると正しく 処理できないので注意すること。
 図2の例では、二つのファイルが選択されてい るが、一つのファイルで対象エリアをカバーで きる場合は、一つのファイルを選択する。
- ② 選択したファイルの対象領域を確認する。②の ボタンをクリックすると図3のようなウィンド ウが表示され、入力データが青く塗られた領域 のデータ(タイル)であることが確認できる。

図 2 MODIS ツールの外観

図3 実験に使用するタイル

③ hdf ファイルは、1つのファイルの中に複数レイヤーのデータが保存されている。解析対象とする

レイヤー以外を選択して「<<」ボタンで対象から外す。

- ④ Input Lat/Long を選択する。
- ⑤ 対象領域を指定する。今回は北緯 35~34 度、東経 135~136 度の領域を切り出す。
- ⑥ 結果ファイルの保存先、ファイル名を指定する。保存先の絶対パス(ファイル名及び、フォルダ名)にスペースが含まれていると、 Error となり ModisTool が正常に動作しないので、注意すること。 ファイル名の拡張子を「.hdr」とするとバイナリ形式、「.tif」とすると GeoTiff 形式で結果ファイルが生成される。一括処理をする場合はバイナリファイルが望ましいが、結果を直に画像として確認したい場合は GeoTiff ファイルを指定するとよい。

図4切り出されたMOD09A1 プロダクトの赤色バンド

 ⑦ Resampling Type に「Nearest Neigbor」を指定する。これにより、 投影法変換の際に、データが存在しないグリッドに対して最も近 いグリッドのデータで補完されることを指定する。例えば、

「Bilinear」を選択すると周囲のグリッドの加重平均値で補完される事になる。

- ⑧ Output Projection Type には、等緯度経度図法である「Geographic」を選択する。
- 一通り設定が完了したら「Save Parameter File ...」で設定を保存する。
- ⑩ ①~⑨が完了したら、「Run」ボタンからデータ形式の変換を実施する。

出力された GeoTiff ファイルを画像ビューアーで表示すると図 4 のようになる。切り出した領域では、左中央に大阪湾が写っており、領域が正しく切り出されていることが確認される。

7. 一括データ変換

上記の様な GUI を用いた ModisTool の実行では、1つ のデータを処理する場合は容易であるが、大量のデータ を処理するには手間がかかる。そこで、ModisTool をコ マンドライン(コマンドプロンプトを用いて)から実行 することで、一度に大量のデータを処理する方法を以下 に述べる。

一括にデータを処理するために、「Suppor MODIS

Support MODIS Resampline Tool
「文化のDDBでEstprm
Directory stored HDF file
YY実験デーSWM0009 2
Unput directory softed HDF file in s LBUX system
Spin of directory softed HDF file in s LBUX system
Spin and Cost A Cost A

☑ 5 Support MODIS Resampling Tool

Resampling Tool」(図 5)を使用する。このツールは、一括処理するためのバッチファイルを自動生成 するプログラムである。

プログラムの実行に際して、MOD09 と MOD11 に関するファイル(*.hdf と*.xml)がそれぞれ別フォ ルダに保存されていることを確認する。

① 6-⑨で保存した設定ファイルを指定する。^{注意1,注意2}

- ② ダウンロードした MODIS データ(ダウンロードした hdf ファイル)のあるフォルダを指定する。この時、異なるプロダクトのデータを同じフォルダに入れないこと(例えば、MOD09A1とMOD11A2は別のフォルダに保存し、それぞれについてツールを実行すること)。
- ③ 結果を出力させるフォルダを指定
- ④ データ識別のための任意の文字列を記入する。今回は、大阪府を中心とした領域であるため、 「OSAKA」と入力する。
- ⑤ Windows OS での実行であるため、Windows にチェックを付ける。
- ⑥ ①~⑤について設定が完了したら、「Exec」ボタンでバッチファイルを生成する。^{注意1}

作成されたバッチファイルは、③で指定したフォルダの下に生成されている。生成された 「ExecBatch.bat」をクリックすると、ModisTool がコマンドプロンプト上で起動し、一括データ処理が 始まる。

^{注意1} 確認事項:パラメタファイル中の "OUTPUT_FILENAME ="の最後の拡張子が".hdr" となって いない場合は、".hdr"に書き換える。例えば下記のように、".hdf"や".tif"となっている場合、最後の三 文字を "hdr" に書き換える。

OUTPUT_FILENAME = O:¥DL¥2012-taiki3eisei¥MOD09RED¥aaaaa.hdf OUTPUT_FILENAME = O:¥DL¥2012-taiki3eisei¥MOD09RED¥aaaaa.tif

 \downarrow

OUTPUT_FILENAME = O:\DL\2012-taiki3eisei\MOD09RED\aaaaa.hdr

^{注意 2} 今回の方法を用いる場合、一度に変換できるデータは、 1 つのレイヤーのみである。

図6は、設定ファイルをサクラエディタで開いた画像であ る。赤で囲まれた部分は、何番目のレイヤーを処理するかを 表している。例えば、MOD09A1 プロダクトの場合、1 番初 めのレイヤーは赤色バンド、2番目が近赤外である(図7)。 図6の場合は、1番はじめの赤色バンドのレイヤーが処理対 象となっていることが分かる。この図6中の赤色の部分に、2 つ以上「1」が付いていると、正しく処理されないので、処理 対象が1つのレイヤーであるかを確認すること。

一度、設定ファイルを生成した後、この「#ORIG_SPECTRAL_SUBSET」の1の位置を変えること

で、異なるレイヤーについての設定ファイルを作成することが出来る。具体的には、MOD09のバンド1の際は、下記のような記載となる。

SPECTRAL_SUBSET = (100000000000)

MOD09のバンド2の場合は、下記のとおりの記載となる。

SPECTRAL_SUBSET = (01000000000)

「**INPUT_FILENAME**」、「**OUTPUT_FILENAME**」行のフォルダのパスに、全角文字やスペース文字 が含まれていると正しくデータが処理されないので、注意すること。

8. 変換対象レイヤー

今回の実験で使用する衛星データは、以下の二つのプロダクトである。

1. Surface Reflectance 8-Day L3 Global 500m

: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1

2. Land Surface Temperature & Emissivity 8-Day L3 Global 1km

: <u>https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2</u>

これらのデータのレイヤー構造に関しては、上記のプロダクトのリンクにアクセスして、「Layers」を クリックすると詳細が表示される。例えば、MOD09A1のレイヤー構造は図7のようになっている。 図7中の倍率とは、実際のデータを何倍すると対象とする物理量となるかを表している。

今回の実験で整備するデータについては、以下の通り である。

- 1. Surface Reflectance 8-Day L3 Global 500m
 - 1-1. 500m Surface Reflectance Band 1 (620-670 nm)
 - 1-2. 500m Surface Reflectance Band 2 (841-876 nm)
 - 1-3. 500m Surface Reflectance Band 3 (459-479 nm)
 - 1-4. 500m Surface Reflectance Band 4 (545-565 nm)
 - 1-5. 500m Reflectance Band Quality

上記の場合、バンド1~4はそれぞれ、赤色、近赤外、青 色、緑色のバンドに相当する。

レイヤー名		データ型	エラー目	レンジ	借奉
500m Surface Reflectance Band 1 (620-670 nm)	Reflectance	16-bit signed integer	-28672	-100-16000	0.0001
500m Surface Reflectance Band 2 (841–876 nm)	Reflectance	16-bit signed integer	-28672	-10016000	0.0001
500m Surface Reflectance Band 3 (459-479 nm)	Reflectance	16-bit signed integer	-28672	-10016000	0.0001
500m Surface Reflectance Band 4 (545-565 nm)	Reflectance	16-bit signed integer	-28672	-10016000	0.0001
500m Surface Reflectance Band 5 (1230–1250 nm)	Reflectance	16-bit signed integer	-28672	-10016000	0.0001
500m Surface Reflectance Band 6 (1628–1652 nm)	Reflectance	16-bit signed integer	-28672	-10016000	0.0001
500m Surface Reflectance Band 7 (2105–2155 nm)	Reflectance	16-bit signed integer	-28672	-100-16000	0.0001
500m Reflectance Band Quality	Bit Field	32-bit unsigned integer	4294967295	0- 4294966531	na
Solar Zenith Angle	Degree	16-bit signed integer	0	0-18000	0.01
View Zenith Angle	Degree	16-bit signed integer	0	0-18000	0.01
Relative Azimuth Angle	Degree	16-bit signed integer	0	-18000- 18000	0.01
500m State Flags	Bit field	16-bit unsigned integer	65535	0-57343	na
Day of Year	Julian day	16-bit unsigned integer	65535	1-366	na

図7 MOD09A1 のレイヤー構造

- 2. Land Surface Temperature & Emissivity 8-Day L3 Global 1km
 - 2-1. LST_Day_1km: 8-Day daytime 1km grid land surface temperature
 - 2-2. QC_Day: Quality control for daytime LST and emissivity
 - 2-3. LST_Night_1km: 8-Day nighttime 1km grid land surface temperature
 - 2-4. QC_Night: Quality control for nighttime LST and emissivity

上記のデータについて、図8に示すフォルダにそれぞれ変換したデータを 図8出カフォルダ構造 出力させよ。

