生態環境計測学 2018/06/06

生態系モデリング

1

植山 雅仁

対象とする現象や素過程を数式 等で模したもの

モデル パラメタ1 パラメタ2 パラメタ3

<u>光</u> <u>ー光合成モデル</u>

4

データの診断 (diagnosing)

予测 (prediction)

補間 (interpolation)

経験モデル

統計モデル、深層学習、機械学習

<mark>プロセス・モデル</mark> 流体モデル、生態系モデル、気候モデル

コンセプト・モデル

光合成有効光量子束 (µmol m⁻² s⁻¹)

1.0-1.5

15 Jul.-1 Aug.

(Vourlitis et al., 2003)

10 プロセス・モデル

熱収支式

¹² プロセス・モデル (Farquhar et al., 1980)

光合成モデル $A = min(W_c, W_j)$

カルビンサイクル

13 プロセス・モデル

個葉モデル (結合モデル)

気孔コンダクタンスモデル

葉面境界層モデル 葉面熱収支モデル

呼吸モデル

光合成モデル 光化学反応 カルビンサイクル

14 プロセス・モデル

土壌微生物モテ

群落モデル

放射伝達モデル

大気乱流モデル

群落構造、上端の放射

個葉モデル 風速、湿度、気温 PPFD、CO₂ etc.

> 群落構造、 上端の風速、温度

15 プロセス・モデル

大気乱流モデル

$$\frac{\partial \overline{w'c'}}{\partial t} = 0 = \frac{\partial}{\partial z} \left[2e\lambda_1 \frac{\partial \overline{w'c'}}{\partial z} \right] - \overline{w'^2} \frac{\partial \overline{c}}{\partial z} - \frac{e}{3\lambda_4} \overline{w'c'}$$

抵抗モデル $S_{c} = aC_{c}\overline{u}\left(c_{L} - \overline{c}\right)$

16 群落多層モデル

7/23 7/24 7/25 7/26 7/27 7/28 7/29 7/30 Date

18 プロセス・モデル 生態系モデル

19 プロセス・モデル 生態系モデル

LPJ Net primary production

(遷移や地理的分布)

(Sitch et al., 2003)

<u>モデルの種類と利点・欠点</u>

シンプル

20

経験モデル

内挿時はあたりやすい外挿時は精度悪い。

プロセスモデル

複雜

正しく考慮されていれば、 外挿もある程度、可能?

予測に不向き

調整パラメタが 少ない。

21 経験式が成り立つ場合 内挿

経験式が成り立たない場合

22

プロセスモデルのパラメタ

1	ECOPHYS	C3 grass 4	
2	Ò	(flag)	1 = ₩00DY 0 = NON-₩00DY↓
3	0	(flag)	1 = EVERGREEN 0 = DECIDUOUS .
4	1	(flag)	1 = C3 PSN 0 = C4 PSN↓
5	0	(flag)	1 = MODEL PHENOLOGY 0 = USER-SPECIFIED PHENOLOGY
6	0	(yday)	yearday to start new growth (when phenology flag = 0)↓
7	364	(yday)	yearday to end litterfall (when phenology flag = 0)↓
8	1.0	(prop.)	transfer growth period as fraction of growing season +
9	1.0	(prop.)	litterfall as fraction of growing season↓
10	1.0	(1/vr)	annual leaf and fine root turnover fraction↓
11	0.00	*(1/vr)	annual live wood turnover fraction.
12	0.1	(1/yr)	annual whole-plant mortality fraction (herbivory).
13	ŏ.i	(1/vr)	annual fire mortality fraction.
14	2.0	(ratio)	(ALLOCATION) new fine root C : new leaf C+
15	0.0	*(ratio)	(ALLOCATION) new stem C : new leaf C+
16	0.0	*(ratio)	(ALLOCATION) new live wood C : new total wood C+
17	0.0	*(ratio)	(ALLOCATION) new croot C : new stem C+
18	0.5	(nron.)	(ALLOCATION) current growth proportion
19	24.0	(koC/koN)	C:N of Leaves +
20	49.0	(kgC/kgN)	C:N of leaf litter, after retranslocation.
21	42.0	(koC/koN)	C:N of fine roots .
22	0.0	*(koC/koN)	C:N of live wood +
23	0.0	*(kgC/kgN)	C:N of dead wood
24	0.39	(DIM)	leaf litter lahile proportion.
25	0.44	(DIM)	leaf litter cellulose proportion.
26	0.17	(DIM)	leaf litter lignin proportion.
27	0.30	(DIM)	fine root labile proportion.
28	0.45	(DIM)	fine root cellulose proportion.
29	0.25	(DIM)	fine root lignin proportion.
30	0.75	*(DIM)	dead wood cellulose proportion.
31	0.25	*(DIM)	dead wood lignin proportion.
32	0.021	$(1/1 \Delta 1/d)$	canopy water interception coefficient
33	0.6	(DIM)	campy light extinction coefficient.
34	2.0	(DIM)	all-sided to projected leaf area ratio↓
35	45.0	(m2/kgC)	canopy average specific leaf area (projected area basis) +
36	2.0	(DIM)	ratio of shaded SLA:sunlit SLA.
37	0.15	(DIM)	fraction of leaf N in Rubiscov
38	0.005	(m/s)	maximum stomatal conductance (projected area basis) +
39	0.00001	(m/s)	cuticular conductance (projected area basis)
40	0.04	(m/s)	boundary layer conductance (projected area basis) +
41	-0.6	(MPa)	leaf water potential: start of conductance reduction.
42	-2.3	(MPa)	leaf water potential: complete conductance reduction.
43	930.0	(Pa)	vapor pressure deficit: start of conductance reduction.
44	4100.0	(Pa)	vapor pressure deficit: complete conductance reduction +
14	1.1.99.19	(1.57)	Taket historia activity, complete conduction reduction.

モデルの当てはまり どう評価するか?

光合成有効光量子束 (µmol m⁻² s⁻¹)

24

モデルの当てはまり

25

モデルの当てはまり

『モデルの当てはまり

回帰式の傾き、切片 変動量の強さ 平均的なバイアス 相関係数、決定係数、有意水準 共変動の強さ ME (mean error) RMSE 予測精度の悪さ 平均的な差 (バイアス)

Training: y = 1.01x + 0.06R²=0.91, p < 0.05 RMSE=0.80 g C m⁻² d⁻¹

(Ueyama et al., 2013)

さまざまなモデルの使い方

アトリビューション分析・要因分析

最適化、逆解析

相互比較とアンサンブル予測

30 アトリビューション分析・要因分析 観測 比較 力 モデル 出力 パラメタ1 パラメタ2 パラメタ3 | 弄 的

<u>微気象 -micrometeorology-</u>

³² 要因分析

気候変化、CO2濃度上昇、火災

33 要因分析

群落光合成速度に影響を及ぼす要因 (Nemani et al., 2003)

モデルの最適化 (パラメタの決定)

。 モデルの最適化 (パラメタの決定)

遊解析

⊸ 逆解析 ーGOSATプロジェクト

平成 22 年 7 月

GOSAT L4A V01.01 CH, Fluxes (2010/07)

http://www.gosat.nies.go.jp/jp/result/download/GOSAT_L4CH4_20149327_jp.pdf

(mgCH./m¹/day)

Ichii et al. (2010)

MIP(モデル相互比較)

43

(http://www.jma.go.jp/jma/kishou/know/whitep/1-3-8.html)

復習事項

☑ コンセプトモデル、経験モデル プロセスモデル(特徴、利点、欠点)

☑ 生態系モデル 一結合モデル

<u>引用·参考文献</u>

- Chapin III, F. S., Matson, P. A., and Mooney, H. A. 2002: Principles of terrestrial ecosystem ecology, Springer-Verlag Press, New York, 436 pp.
- Farquhar, G. D., Von Caemmerer, S., and Berry, J. A. 1980: A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species, Planta 149, 79–90.
- Friedlingstein, P. et al. 2006: Climate-carbon cycle feedback analysis: Results from the C⁴MIP model intercomparison, J. Climate, 19, 3337-3353.
- Ichii, K., Suzuki, T., Kato, T., Ito, A., Hajima, T., Sasai, T., Ueyama, M., Hirata, R., Saigusa, N., Ohtani, Y., and Takagi, K. 2010: Multi-model analysis of terrestrial carbon cycles in Japan: the role of flux observation to reduce uncertainties of model outputs among ten terrestrial ecosystem models. Biogeosciences 7, 2061–2080.
- Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running S. W., 2002: Climate-driven increases in global terrestrial net primary production from 2982 to 1999. Science, 300, 1560-1563.
- Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S. 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185.
- Ueyama, M., et al. 2013: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression, J. Geophys. Res. Biogeosciences, 118, doi:10.1002/jgrg.20095.
- Vourlitis, G. L., Aillie, J., Oechel, W. C., Hope, A., Stow, D., and Engstrom, R. 2003: Spatial variation in regional CO₂ exchange for the Kuparuk river basin, Alaska over the summer growing season. Global Change Biol., 9, 930–041.